Feature extraction of hyperspectral remote sensing image based on optimized Discriminative Locality Alignment
نویسندگان
چکیده
ç®åï¼é«å è°±é¥æç¹å¾æåæ¹æ³å¾å¾å åå°åªå£°çå¹²æ°è导è´éç»´æææ¬ ä½³ãè¿å¹´æ¥ï¼å¤å«å±é¨å¯¹é½DLAï¼Discriminative Locality Alignmentï¼ç±äºå¯ä»¥å¤çé线æ§å叿 ·æ¬ãä¿çå±é¨å¤å«ä¿¡æ¯ï¼åæ¶é¿å ç©éµå¥å¼æ§é®é¢ï¼åå°äºå¾å¤å¦è çå ³æ³¨ï¼ä½è¯¥æ¹æ³æ æ³ææä¼°è®¡ååå°åªå£°å¯¹é«å è°±é¥æå½±åçå½±åãé对以ä¸é®é¢ï¼æ¬ææåºäºæå°åªå£°å¤å«å±é¨å¯¹é½MDLAï¼Minimum-noise Discriminative Alignmentï¼ç线æ§ç¹å¾æåæ¹æ³åæ ¸æå°åªå£°å¤å«å±é¨å¯¹é½KMDLAï¼Kernel Minimum-noise Alignmentï¼çé线æ§ç¹å¾æåæ¹æ³ãå åå©ç¨æå°åªå£°å离MNFï¼Minimum Noise Fractionï¼çå»åªè½åï¼å°MNFä¸DLAç®æ³ç»åæåºäºMDLAæ¹æ³ï¼è¯¥æ¹æ³é¦å å©ç¨MNF对é«å è°±é¥æå½±åè¿è¡éç»´ï¼åå°å¾åä¸çåªå£°ï¼ç¶ååå¨å空é´è¿è¡DLA忢å¾å°æç»çæå½±æ°æ®ã为æé«æ ·æ¬åå¸çé线æ§å¤å«è½åï¼åºäºKMNFä¸DLAç®æ³å°æ ¸æ¹æ³å¼å ¥MDLAï¼æåºäºKMDLAæ¹æ³ï¼è¯¥æ¹æ³é¦å éè¿KMNFå°åå§ç©ºé´çæ°æ®æ å°å°æ°çç¹å¾ç©ºé´ï¼ç¶åå¨ç¹å¾ç©ºé´ä¸è¿è¡DLA忢å¾å°æç»çæå½±æ°æ®ãå®éªé¨åé¦å å©ç¨3ç»é«å è°±é¥ææ°æ®å¯¹æåºç®æ³çæ§è½è¿è¡è¯ä»·ï¼å¹¶ä¸ç¸å ³ç¹å¾æåç®æ³è¿è¡äºå¯¹æ¯åæï¼æååæäºå¾ååªå£°å¯¹ä¸åéç»´æ¹æ³æ§è½çå½±åãç»æè¡¨æï¼æåºçç®æ³å¯¹é«å è°±é¥æå½±åç¹å¾æåææè¾å¥½ï¼ä¸å¯ææåå°åªå£°å¯¹å½±åçå½±åå¹¶æåå ¶åç±»å确度ã
منابع مشابه
Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملoverlap-based feature weighting: the feature extraction of hyperspectral remote sensing imagery
hyperspectral sensors provide a large number of spectral bands. this massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. we propose to use overlap-based feature weigh...
متن کاملImpervious Surface Information Extraction Based on Hyperspectral Remote Sensing Imagery
The retrieval of impervious surface information is a hot topic in remote sensing. However, researches on impervious surface retrieval from hyperspectral remote sensing imagery are rare. This paper illustrates a case study of information extraction from urban impervious surfaces based on hyperspectral remote sensing imagery that is intended to improve the image spectral resolution of impermeable...
متن کاملDiscriminative Locality Alignment
Fisher’s linear discriminant analysis (LDA), one of the most popular dimensionality reduction algorithms for classification, has three particular problems: it fails to find the nonlinear structure hidden in the high dimensional data; it assumes all samples contribute equivalently to reduce dimension for classification; and it suffers from the matrix singularity problem. In this paper, we propos...
متن کاملHyperspectral Image Feature Extraction Based on Generalized Discriminant Analysis
The hyperspectral image enriches spectrum information, so compared with panchromatic image and multispectral image; it can classify the ground target better. The feature extraction of hyperspectral image is the necessary step of the ground target classification, and the kernel method is a new way to extract the nonlinear feature. In this paper, First the mathematical model of the generalized di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of remote sensing
سال: 2021
ISSN: ['1007-4619', '2095-9494']
DOI: https://doi.org/10.11834/jrs.20219448